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Abstract

Introduction: It is unknown how the brain coordinates decisions to withstand personal
costs in order to prevent other individuals’ distress. Here we test whether local field poten-
tial (LFP) oscillations between brain regions create “neural contexts” that select specific
brain functions and encode the outcomes of these types of intersubjective decisions.
Methods: Rats participated in an “Intersubjective Avoidance Test” (IAT) that tested
rats’ willingness to enter an innately aversive chamber to prevent another rat from
getting shocked. c-Fos immunoreactivity was used to screen for brain regions involved
in IAT performance. Multi-site local field potential (LFP) recordings were collected si-
multaneously and bilaterally from five brain regions implicated in the c-Fos studies
while rats made decisions in the IAT. Local field potential recordings were analyzed
using an elastic net penalized regression framework.

Results: Rats voluntarily entered an innately aversive chamber to prevent another rat
from getting shocked, and c-Fos immunoreactivity in brain regions known to be in-
volved in human empathy—including the anterior cingulate, insula, orbital frontal cor-
tex, and amygdala—correlated with the magnitude of “intersubjective avoidance” each
rat displayed. Local field potential recordings revealed that optimal accounts of rats’
performance in the task require specific frequencies of LFP oscillations between brain
regions in addition to specific frequencies of LFP oscillations within brain regions.
Alpha and low gamma coherence between spatially distributed brain regions predicts
more intersubjective avoidance, while theta and high gamma coherence between a
separate subset of brain regions predicts less intersubjective avoidance. Phase rela-
tionship analyses indicated that choice-relevant coherence in the alpha range reflects
information passed from the amygdala to cortical structures, while coherence in the
theta range reflects information passed in the reverse direction.

Conclusion: These results indicate that the frequency-specific “neural context” sur-
rounding brain regions involved in social cognition encodes outcomes of decisions that

affect others, above and beyond signals from any set of brain regions in isolation.
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1 | INTRODUCTION

“Empathy” is an innate, fundamental phenomenon that confers powerful
evolutionary advantage. Empathy-motivated relationships increase indi-
viduals’ reproductive success (Seyfarth & Cheney, 2012) and decrease
mortality (Holt-Lunstad, Smith, & Layton, 2010), which might be related
to observations that empathy inhibits aggression, motivates coopera-
tion, and facilitates moral principles (De Waal, 2008; Eisenberg & Morris,
2001). Decisions and actions based on empathy are posited to be respon-
sible for the evolution of humans’ advanced cognitive abilities (Burkart
et al,, 2014; De Waal, 2008). Understanding how empathy influences de-
cisions and actions will provide an essential window into the evolutionary
trajectories that make us uniquely human, and provide insight into how to
enhance prosocial behavior and decrease human violence.

The subjective experience of making an empathic decision often
gives a decider the sense that the decision is the result of one con-
tinuous cognitive operation. However, this subjective experience
may be a misleading guide of what is actually happening in the brain
when an empathic decision is made. Decision-making is the result of
multiple information processing systems acting in parallel (Barrett &
Satpute, 2013; Doya, 2008). Neither decision-making nor social pro-
cessing is localized to a single brain region (Barrett & Satpute, 2013;
Ruff & Fehr, 2014; Stanley & Adolphs, 2013; Teles, Almeida, Lopes, &
Oliveira, 2015). Furthermore, most individual brain regions involved
in decision-making and social processing are responsible for several
different cognitive subfunctions (Betti & Aglioti, 2016). Mechanisms
must exist to dynamically select the specific function, or functions,
a given brain region plays in social cognition, especially if the same
brain region plays multiple functions simultaneously. It has been pos-
ited that the function a brain region executes in social situations might
be based on its “neural context”, or its interaction with the activity of
brain regions it is connected to at that time (Goodson & Kabelik, 2009;
Mclntosh, 1999; Park & Friston, 2013; Pessoa, 2014). If true, empathic
decisions may be reflected by the overall coordination of activity
across different brain regions rather than, or in addition to, the activity
of a single social processing brain region (Goodson & Kabelik, 2009).

Neural oscillations provide a window into coordinated neural activ-
ity that could create functionally-specific neural context. Information
passed between a pair of brain regions can be preferentially ampli-
fied or communicated by coordinating the oscillatory amplitudes and
phases of transmembrane currents in groups of local neurons within
those brain regions (Akam & Kullmann, 2014; Buschman & Kastner,
2015; Henry, Herrmann, & Obleser, 2014; Voytek & Knight, 2015).
Such oscillations are observable through local field potentials (LFPs;
Basar, Basar-Eroglu, Karakas, & Schirmann, 2001), which are extracel-
lular brain potentials comprised of weighted spatial averages of large
local populations of neurons’ transmembrane currents. LFPs are com-
prised of oscillations of different frequency bands ranging in width (ie:
“theta band” oscillations are typically 5 Hz in width and span 4-8 Hz;
Lewis, 2012) that are believed to have different functions (Akam &
Kullmann, 2014). Local field potential “power” is a measure of the mag-
nitude of these oscillations at a single location. Local field potential

“coherence” is a measure of temporally synchronized versions of these

oscillations between more than one brain location (Canolty et al., 2010;
Wang, 2010). Given the role coordinated oscillations have been shown
to play in information transfer (Akam & Kullmann, 2014; Buschman &
Kastner, 2015; Henry et al., 2014; Voytek & Knight, 2015), an efficient
mechanism for coordinating neural context would be to orchestrate se-
lective frequencies of LFP coherence between brain regions. Thus, we
hypothesized in this study that individual judgments to avoid another
individual’s pain would be partially encoded by selective frequencies of
coherence between social cognition brain regions.

It is difficult to test relationships between coherence and intersub-
jective decision-making in humans due to the ethical and methodological
challenges of recording LFPs from multiple spatially distributed regions
in the human brain. It is similarly difficult to test relationships between
coherence and intersubjective decision-making in rodents, due to the
challenges in developing appropriate behavioral, recording, and analysis
techniques for assessing LFP activity in multiple brain regions simulta-
neously while rodents make intersubjective decisions. To manage those
challenges, we begin in this study by developing a test of rat intersubjec-
tive decision-making that models empathic decision-making in humans.
A common method of studying animals’ cost-benefit decisions between
competing alternatives is to examine animals’ locomotor choices to
avoid or approach salient stimuli (Hirayama, Moroz, Hatcher, & Gillette,
2014). When an animal avoids a stimulus, that stimulus is interpreted as
causing an aversive experience for the decision-maker (Corsini, 1999).
Building on this method, we designed the “Intersubjective Avoidance”
(IA) test to measure how much an Observing rat will avoid locations
paired with another rat’s distress. “Intersubjective”, in this case, refers
to the fact that negatively-valenced affect has to be transferred be-
tween the rat that receives pain and the Observing rat in order for the
Observer to be motivated to exhibit avoidance.

Taking advantage of the IA test, we used c-Fos mapping to identify
brain regions that encode the extent to which one rat avoided other
rats’ pain. We then designed a surgical strategy to record LFPs from all
of these areas simultaneously while rats were making intersubjective
decisions, analyzed power oscillations within each region and coher-
ence oscillations between each pair of regions, and applied a machine-
learning framework to determine what frequencies of LFP power and
coherence encoded the outcomes of those decisions.

Supporting our hypothesis, we found that the optimal description
of rats’ decisions about how to respond to another rat’s pain required
measurements of local oscillations within—and measurements of long-
distance oscillations between—the anterior cingulate, anterior insula,
orbitofrontal cortex, basolateral amygdala, and olfactory amygdala.
Furthermore, intersubjective decision-encoding oscillations were ob-
served primarily when rats were witnessing another rat get shocked,
rather than when rats had already chosen to avoid another rat’s pain,
supporting the inference that the oscillations were related to the in-
tegration of social cues with neural decision-making machinery, rather
than some type of generalized arousal. These results suggest that the
brain networks involved in rat intersubjective decision-making may be
evolutionarily conserved, and provide evidence that intersubjective
decisions are encoded through interactions between brain regions as
well as through isolated neural activity.
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2 | MATERIALS AND METHODS

2.1 | Subjects

Male Wistar rats from Charles River (approximately 150 g upon de-
livery) were pair-housed in one of three animal facilities (two at
Stanford, one at Duke), and maintained on a reverse 12-hr light-dark
cycle with free access to food and water. Animals were handled for
a minimum of 5 days before testing. Animals were 8-20 weeks old
when the experiments commenced (cohorts 1-4 were approximately
9, 20, 10, 14 weeks old, respectively; the arousal cohort was approxi-
mately 8 weeks old; the electrophysiology cohort was approximately
8-9 weeks old when the surgeries were implemented and 10 weeks
old when behavioral habituation commenced). All animal proce-
dures were approved by the Stanford University or Duke University
Institutional Animal Care and Use Committees and were in accordance

with the NIH guidelines for the Care and Use of Laboratory Animals.

2.2 | Procedure

Experiments were conducted during the animals’ circadian dark cycle.
After testing, animals were transferred from the testing room to a
separate holding room until all of the animals for the day had been
run. All testing apparatuses were cleaned with Nature’s Miracle® be-
tween sessions.

2.3 | Intersubjective avoidance apparatus

The testing apparatus, adapted from a previous report
(Preobrazhenskaya & Simonov, 1970), was made of clear acrylic plas-
tic. One inner chamber was 12.0” L x 9.5” W to fit a metal grid floor
purchased from Med Associates (ENV-008). Two outer chambers
(12.0" Lx 7.0" W and 17.0" x 7") each shared a separate, but adja-
cent transparent wall with the inner chamber (Figure 1a). The trans-
parent walls between chambers had holes to allow visual, auditory,
olfactory, and nose-to-nose tactile contact between the inner cham-
ber and both outer chambers. The outer chambers were connected by
an open door (3.0" W x 4.0"” H). One outer chamber (outer chamber
1 in Figure 1a) had three darkened walls and a black floor made out of
LEGOs® for texture, while the other outer chamber (outer chamber 2
in Figure 1a) had two white walls, one transparent wall, and a white
plastic floor. One 60W light bulb was placed outside the transparent
wall of outer chamber 2 to illuminate it with approximately 1050 lux
(Stanford animal facility 1), 950 lux (Stanford animal facility 2) or 350
lux (Duke animal facility); illumination was adjusted so that pilot co-
horts preferred the dark chamber by 60-120 s during baseline. In all
cases the dark outer chamber was kept at approximately 12 lux. The

Receiver’s chamber was held at approximately 250 lux.

2.4 | Intersubjective avoidance (“IA”) test

Each day, the “Receiver” was placed in the single inner chamber, the

“Observer” was placed in the white outer chamber, and then the
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experimenter began recording an overhead video (Figure 1a). The
Observer was allowed to pass freely between the two outer chambers
for five minutes (starting when the video session was initiated). The test
was comprised of three 5-day phases (and one 1-day interim phase),
and the amount of time the Observer spent in each outer chamber was
recorded each day. A given Observer would be paired with a different
noncagemate Receiver each day so that no Receiver-Observer pair was
repeated more than once during testing phases of the experiment.
After Observers’ were habituated to the apparatus (Deacon, 2006;
Whishaw and Kolb, 2005; see Supplementary Methods in Supporting
Information for details), the 5-day Baseline Phase began. During
Baseline, Receivers and Observers were allowed to explore their re-
spective environments without disruption. The day after Baseline fin-
ished, the 5-day Testing 1 phase began. During Testing 1, every time
an Observer passed into the dark chamber the Receiver would receive
3 quick successive shocks (1.5 mA; 500 ms on/500 ms off/1000 ms
on/1000 ms off/500 ms on/500 ms off) every 10 s until the Observer
left the dark chamber. Visual inspection of all experimental videos con-
firmed that Receivers were generally not able to avoid the electrical
shocks, although some animals did attempt to do so by holding onto
cracks or holes in the ceiling of the Receivers’ chamber. Observers
who did not show strong avoidance during Testing Phase 1 were de-
fined as “Testing 1 Non-avoiders”; all other Observers were defined as
“Natural Avoiders”. The day after Testing 1 completed comprised the
Interim Phase. During Interim (Figure 2a), “Testing 1 Non-avoiders”
were placed in the inner receiving chamber with no other animal pres-
ent and given 3 quick successive shocks (1.5 mA; 500 ms on/500 ms
off/1000 ms on/1000 ms off/500 ms on/500 ms off) every 30 s for
5 min. “Natural Avoiders” were placed in the inner receiving chamber
with no other animal present for 5 min, but no shocks were adminis-
tered. The day after Interim, the 5-day Testing Phase 2 began, which

was implemented with procedures identical to Testing Phase 1.

2.5 | Dividing observers into “Natural Avoiders” and
“Testing 1 Non-avoiders”

As described above, after Testing 1, the animals in each cohort used
for behavioral experiments were divided into two groups based on
their tendency to avoid the dark chamber during Testing 1. “Natural
Avoiders” were those animals that exhibited the greatest tendency
within a cohort to avoid the dark chamber, while “Testing 1 Non-
avoiders” were those animals within a cohort that showed little or
no evidence of avoidance. Additional information about how animals
were assigned to the “Natural Avoiders” and “Testing 1 Non-avoiders”
groups is provided in the Supplementary Methods section of the
Supporting Information.

2.6 | Behavioral coding

All videos were assessed by one of three human observers according
to the criteria described in the Supplementary Methods section of the
Supporting Information. In order to ensure observers scored videos
consistently, all three human observers had to watch and code at least
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FIGURE 1 Receiver distress is aversive and motivates avoidance. (a) Intersubjective Avoidance (IA) test design: Baseline and Testing 1.

(b) Testing Observers (N = 33) reduce their light avoidance/dark preference during Testing 1. *Testing v. Control Observers, p < .01 in repeated
measures ANOVA (with cohort as a covariate). (c) Histogram of all Observers’ behavior during Testing 1 (color-coded by cohort). Intersubjective
avoidance was demonstrated whenever an Observer’s dark preference was reduced during testing (A Dark Preference is negative). (d) IA of
“Natural Avoider” shown in Movie S1. (e) Observers’ |A is spatially specific; Observers’ dark preference increased when going into the light
chamber was paired with shocks to Receivers (N = 6), but decreased when going into the dark chamber was paired with shocks to Receivers

(N = 6). * Experimental group x testing phase interaction in repeated measures ANOVA, p < .05. All error bars indicate s.e.m.

three of the same videos three times. The human observers only pro-
ceeded to coding other experimental videos if they had at least 95%
scoring consistency with themselves and with other raters.

2.7 | Statistical analysis of behavior

Preferences for the dark chamber were assessed using repeated-
measures ANOVAs with dark chamber preference as the dependent
variable. Independent variables were Testing Phase (within-subject
factor, coding for Baseline, Testing 1, or Testing 2 as appropriate)
and Experimental group (between-subject factor coding for Control
Observer or Testing Observer in Testing 1, and Control, “Natural
Avoider”, or “Testing 1 Non-avoiders” in Testing 2). A covariate of

non-interest indicating the cohort of the Observer was included in

all analyses. Significant interactions were interpreted via planned
comparisons between testing phases or planned comparisons be-
tween groups. Since each repeated measurement within an experi-
mental phase was not independent from the others, multivariate tests
were used to interpret the results of all within-subject effects. In all
analyses, “A dark preference Testing 1” is the cumulative average
dark chamber preference during Testing 1 (5 days) subtracted from
the cumulative average dark chamber preference during Baseline
(5 days). “A dark preference Testing 2" is the cumulative average dark
chamber preference during Testing 2 (5 days) subtracted from the cu-
mulative average dark chamber preference during Baseline (5 days).
Intersubjectcive Avoidance, or “IA” is computed as the inverse of the
dark chamber preference on a single day of testing subtracted from

the cumulative average dark chamber preference during Baseline.
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Relationships between IA and grooming, rearing, and social inves-
tigation in the electrophysiology experiments were assessed using

Spearman’s rank correlations, linear regression, and quadratic regression.

2.8 | Immunohistochemistry

Details of the immunohistochemistry procedures are provided in the
Supplementary Methods section of the Supporting Information. Given
practical constraints on how many rats could be run in the appropri-
ate circadian window of one day, the brains of 19 of the 33 Observer
rats run in the |A test were collected (selected with an effort to col-
lect brains from Observers with a wide range of behavior). In addition,
brains were also collected from five Receivers, six control animals who
naturally preferred the dark, and four control animals who naturally
preferred the light. Five of the Observers and two of the Receivers
had compromised brain tissue in 1 or more of the brain regions tested
and were excluded from a subset of analyses. All analyses in Figure 3

have at least three animals in each experimental group.

2.9 | Microscopy, image processing, and
cell counting

Digital images of all brain structures of interest were taken and saved
with the same illumination settings. A rat brain atlas was used to de-
fine the coordinates and boundaries of the brain structures analyzed
(Paxinos & Watson, 2007). The coronal limits of brain regions of interest
and the procedures used to automate cell counting are provided in the
Supplementary Methods section of the Supporting Information. A mini-
mum of four sections across each area of interest were counted for each

rat, and at least three rats were included in each experimental group (ie:

I Testing 1 Non-Avoiders
I Natural Avoiders

0

A Dark Preference
Testing 1 (s)

s
o o
S &

Baseline Testing 1

Day

Testing 2

Control Animals
Testing 1 Non-Avoiders
Natural Avoiders

(d)

Number of Rats
O N B OO

150 300 -300 -150 0 150

A Dark Preference
Testing 2 (s)

300

Receivers, Observers, or Controls). The Observer experimental control
groups always had at least 14 rats. Controls that naturally preferred the
dark and controls that naturally preferred the light were combined into
one group unless a planned comparison indicated that they were signifi-

cantly different from one another (see Statistics section).

2.10 | Statistical analysis of c-Fos
immunohistochemistry

Outliers were identified using Tukey’s hinges (>25th or 75th percen-
tiles £ 1.5 interquartile range) and were winsorized (replaced with
Tukey's hinges + 1.5 interquartile range) before any of the c-Fos data
between groups were compared. Data were also examined for skew-
ness and kurtosis, and either transformed to their logarithms (for the
mixed-effects model) or square-roots (for the regressions) to improve
normality. The means of c-Fos immunoreactivity between experimen-
tal groups were compared using a mixed-effects model with a fixed
effect for experimental group and random effects specific to every
rat to accommodate unequal amounts of repeated measures (see the
Supplementary Methods section of the Supporting Information for de-
tails of model) (Gueorguieva & Krystal, 2004). The result of the mixed-
effects model was used to test all pairwise hypotheses between groups.
When the means of the controls that naturally preferred the light and
controls that naturally preferred the dark were not significantly differ-
ent, they were combined. The mixed-effects model were performed on
log-transformed c-Fos variables, but the plots in Figure 3a of the main
text depict raw data. p-values with and without a Bonferroni multiple
comparisons correction are reported.

Correlations and regressions testing relationships between mean

c-Fos activity and IA test performance (Tables 2 and 3) were performed
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FIGURE 3 Common and unique elevated c-Fos expression patterns in Receivers and Observers compared to Controls. (a) c-fos expression in
Observers, Receivers, and Controls. Boxes indicate middle 50% of the data. The line represents the median of the data. Whiskers represent the
maximum and minimum values. Blue circles indicate the median values for each rat in the analysis. Significance testing symbols underneath the
plot depict the results of pairwise comparisons. Black lines indicate a significant difference between groups, p =< .05 when Bonferroni multiple-
comparison corrections are applied. Gray lines indicate a significant difference between groups, p =< .05, when the multiple comparisons
correction is not applied. Controls who naturally preferred the light and controls who naturally preferred the dark were combined unless their
means were significantly different (in which case they are depicted with separate light and dark gray boxes, respectively, in the chart). BLA,
basolateral amygdala; CE, central amygdala; OAMY, olfactory amygdala; ACC, anterior cingulate; PVN, paraventricular nucleus; PRE, prelimbic
cortex; INF, infralimbic cortex; OFC, orbitofrontal cortex; INS, anterior insula; ACC, anterior cingulate. (b) A Dark Preference Testing 2 plotted
against density of c-Fos expression (untransformed data shown; statistics used transformed data). Blue r? values in bold are significant, p < .05.
Blue r? values in italics approach significance, p < .08. (c) Examples of c-Fos expression in the ACC of a Natural Avoider, Testing 2 Avoider, Non-
avoider (never demonstrated IA), and a Control Observer from approximately +2.75 mm anterior of Bregma. The corresponding atlas slice is
illustrated on the left; the approximate boundaries of the ACC are represented by dashed lines
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using Pearson correlations and hierarchical regression. Hierarchical
regressions were performed to determine the unique relationship of
individual c-Fos variables on behavior when other c-Fos variables were
accounted for. Since these analyses only examined Observers, square-
root transformations were sufficient to meet normality and homoge-
neity of variance requirements and were applied to the ACC, CEN,
OAMY, and PVN data, but not required for the other five brain regions
in this analysis. Statistics were performed on square-root transformed
c-Fos variables (Tables 2 and 3, R? values in Figure 3b), but the plots in
Figure 3b of the main text depict raw data. In all correlation analyses,
a p-value =< .05 (without multiple comparison corrections) was ac-
cepted as statistically significant, though marginally significant results

(p =< .08) were also reported.

2.11 | Local field potential data collection and
pre-processing

2.11.1 | Surgery

Ten microwire electrode bundles were implanted in ten 8-9 week-
old rats in the brain areas coordinates described in Table 1. Each
bundle was custom-designed to have the configuration depicted
in Figure 4a and 4b in order to ensure all the bundles could be im-
planted simultaneously. All bundles were created using previous
published procedures (Dzirasa, Fuentes, Kumar, Potes, & Nicolelis,
2011). In addition to the bundles, six stainless-steel screws were in-
serted into the skull for stability. A ground wire was wrapped around
a screw over the cerebellum. To ensure rats could safely be pair-
housed after surgery, (1) the completed implant was kept very close
to the skull with a low profile, (2) the omnetics microconnector was
carefully placed towards the back of the head facing the rest of the
body so that it could not easily be reached by another rat, and (3)
dental cement was shaped carefully around the connector and the
wires to make it difficult for another rat to chew or grab any part of
the implant (Figure 4c, d). After full recovery from surgery, rats were
returned to their home cage with their cagemate for at least one
week before experiments begun. Habituation for the experiments
began when animals were about 10 weeks old. Three animals ulti-
mately had to be excluded due to damaged omnetics microconnec-
tors (caused by interactions with cagemates). After completion of
the study, all electrode placements were confirmed in the remaining
seven rats with nissl staining.

TABLE 1 Locations and descriptions of
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2.11.2 | Acquisition parameters and procedures

All recordings were collected continuously using a custom-made
31-channel wireless headstage from Triangle BioSystems International
(http://www.trianglebiosystems.com/). LFPs were sampled at 2000 Hz,
preamplified (800x), notch-filtered online to remove electrical artifacts,
low-pass filtered (250 Hz), and digitized at 2000 Hz using NeuroWare©
software (Triangle BioSystems International). Overhead videos were
collected throughout all recording sessions. Random patterns of square
waves were sent simultaneously to the analog input of the recording
system and a LED located at the edge of the video field of view to be
able to precisely align behavioral events with neural recordings offline.

2.11.3 | Local field potential oscillatory power

A sliding-window Fourier transform was applied to the LFP signal
using a 1-s window with no overlap. These 1-s windows were aggre-

gated and averaged for subsequent analyses.

2.11.4 | Local field potential cross-structural
coherence

Coherence was calculated using the Matlab (MathWorks) mscohere
function. Coherence “is a function of the power spectral densities, P, (f)
and Pyy(f), of x and y, and the cross power spectral density, ny(f), of x
andy: ny(f) =] ny(f)lz)/ P (f) Pyy(f)." A sliding window of 1 s with a 1-s
step and no overlap was used; transform parameters were chosen to
allow for a frequency resolution of 1 Hz. These 1-s windows were ag-

gregated and averaged as appropriate for subsequent analyses.

2.11.5 | Note about lower local field potential
frequencies

The primary analyses implemented in this study rely on knowing
whether an Observer is in the dark or light chamber. Given that ani-
mals can move from the light to the dark chamber in less than a sec-
ond, we felt it was imperative to have a minimum time-resolution of
one second. The trade-off for this time resolution, however, is that
fewer cycles of low frequency oscillations are captured in each win-
dow. Thus, the results from very low frequency ranges (especially
<4 Hz) should be interpreted with more caution than results from
higher frequency ranges.

R . Brain region A/P coordinate M/L coordinate D/V coordinate No. Wires
microwire electrode bundles
L/R ACC 25 +0.5 1.6 4/4
L/R OFC 3.7 +2.0 3.8 3/3
L/R INS 2.2 +4.0 4.5 4/4
L/R BLA =3 +5.0 7.5 2/2
L/R OAMY -1.4 +3.2 8.8 2/2

ACC, anterior cingulate; OAMY, olfactory amygdala; OFC, orbitofrontal cortex; INS, anterior insula;

BLA, basolateral amygdala.
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FIGURE 4 Surgical and Statistical Design. (a) Target location of individual electrode wires in each electrode bundle for the simultaneous
recordings in the anterior cingulate (ACC), orbitofrontal cortex (OFC), anterior insula (INS), olfactory amygdala (OAMY), and basolateral amygdala
(BLA). Colors indicate bundles of electrodes in same brain region. (b) Configurations of electrode bundles custom designed for each brain region.
(c) Configuration of wireless headstage. (d) Observers pass easily through the door of the testing apparatus with the wireless headstage on.
(e) Schematic of Elastic Net Analysis: 5500 characteristics of brain network activity are used to model behavior in ten days of testing in the

Intersubjective Avoidance (IA) test (N = 7)

2.11.6 | Local field potential amplitude correlation
and phase analysis

All amplitude and phase analyses were restricted to time periods
when Observers were in the dark chamber. Similar to previously
published methods (Kumar et al., 2014; Likhtik, Stujenske, Topiwala,
Harris, & Gordon, 2014), LFP data was filtered using butterworth
bandpass filters designed to isolate LFP oscillations in 1 Hz bins, and
then the instantaneous phase of the filtered data was computed using
the Hilbert transform. To compare the relationship between the phase
fluctuations of two signals from separate sources, the instantaneous
phase difference (c]>Region1 - chegionz) was calculated for each time
point, and the mean resultant length (MRL) of the entire phase differ-
ence time series from the dark periods of each experimental day was
determined. These MRL values could range from 1 to 0. MRL values
of 1 indicated that the phases of the two signals were perfectly syn-
chronized (distributions of their phase differences clustered around

a single angle/phase). MRL values of O indicated that the two signals
were not synchronized at all (the distributions of phase differences
were uniform across all angles/phases). Importantly, all phase rela-
tionships measured in this way were independent of the amplitude of

the signals being compared (Tass et al., 1998).

2.11.7 | Aggregating data across electrodes

The power, coherence, or MRL values calculated from all correctly-
placed electrodes with reliable data (e.g. signal did not drift dramati-
cally or saturate during movement) within a brain region or between

pairs of brain regions were averaged before subsequent analyses.

2.11.8 | Imputation

There were some missing data points in our electrophysiology data

matrix due to misplaced electrodes, excessively noisy individual
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electrodes, 1 session when the recording computer malfunctioned,
and 2 sessions when an Observer spent the entire session in the light
chamber. Since ENET models cannot accommodate missing data, we
imputed the electrophysiological data to fill in these missing values
before running all ENET models. A “donor” sample of the same size as
the number of observations that did not have missing data was cre-
ated by selecting vectors from all observations that did not have miss-
ing data randomly with replacement. A donor vector was chosen from
this donor sample for each observation with a missing value, randomly

with replacement. This procedure was repeated 10 times.

2.12 | Regularized linear regression using Elastic
Net penalty

The principles and motivation for the Elastic Net framework are discussed

in the Supplementary Methods section of the Supporting Information.

2.12.1 | Model

Let y represent the vector of 70 IA responses (7 rats x 10 testing days
for each rat), or the vector of residual IA responses once IA is regressed
on changes in dark chamber grooming and social interaction. These
responses represent Observers’ change in dark chamber preference
in seconds on each day of Testing compared to their mean preference
during the five days of Baseline. For rat i, the vectorx x; contains the
measurement for its p = 5500 neural predictors. These neural predic-
tors include (1) the change in power in 1 Hz oscillation bands from 1 to
100 Hz of each of the ACC, OFC, INS, BLA, and OAMY from baseline
to each testing day (1000 predictors when all electrodes in a brain
region are averaged) and (2) either the magnitude of the change in co-
herence, the change in amplitude correlation, or the change in MRL in
1 Hz oscillation bands from 1 to 100 Hz in each possible pair of these
brain regions from baseline to each testing day. The neural activity
for the seven rats (or six rats when the data from one rat is left out) is
represented by matrix X with the dimensions n x p, where n = 70 due
to the 10 testing days for every rat. Let B represent the coefficients
when y is regressed on neural predictors. Usual least squares or maxi-
mum likelihood estimates of these coefficients cannot be calculated
due to the high-dimensionality problem. Thus, we impose the ENET
penalty on p. ENET estimates the regularized regression coefficients
Bener @s @ solution of the following optimization problem:

ﬁenet=al’g|l3ﬂin { 3 <Yi—ﬁo—2lexijﬁi)2+/1 i (“ﬁf‘* (1-«) )ﬁj‘) } ;
i=1 =1

I:

(1)

where a and 4 are tuning parameters that are sected using 10-fold

cross-validation.

2.12.2 | Procedure

For the ENET-Dark analyses, the X matrix was based on time points

when individual Observer rats were in the dark chamber. For the
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ENET-Light analyses, the X matrix was based on time points when in-
dividual Observer rats were in the light chamber. All ENET estimates
were computed using the Matlab Lasso function. A 10-fold cross val-
idation procedure was used to choose the optimal values of a and
A that minimized mean squared error in predicting IA (the chosen «
and 4 values had the smallest mean squared error when all 10 cross-
validation sets were averaged). We ran the 10-fold cross validation
procedure on ten separate imputations of missing data in the X matrix.
The reported coefficients represent the median coefficient from all
ten imputations (each of which had a and A values chosen by their own
10-fold cross validation procedure). Power and coherence/amplitude
correlation/MRL parameters were always modeled jointly.

2.12.3 | Leave-one-rat-out analyses

To assess the consistency of our ENET procedure, we repeated the
ENET-Dark analyses with single animals removed from a model. We
assessed the consistency of the predictors retained in these models
compared to the full ENET model by (1) visualizing the number of
times a parameter had a nonzero coefficient in the ENET results of
each of the seven Leave-one-rat-out analyses, and (2) calculating the
true positive (TP), true negative (TN), false positive (FP), and false neg-
ative (FN) rates across of the ENET-Leave-one-rat-out analyses. We
assessed the consistency of the coefficient magnitudes across models
by computing a root mean squared error (RMSE) for LFP parameters
in the TP, FP, and FN categories of predictors (Hastie, Tibshirani, &
Friedman, 2009). We also used the leave-one-rat-out analyses to esti-
mate the predictive performance of our ENET-procedure according to
the median absolute error (MAE) fraction, or fraction of error reduced
by using the ENET model compared to the null model when predicting
the concatenated IA values for all seven rats. The procedures used to
implement these analyses are detailed in the Supplementary Methods

section of the Supporting Information.

3 | RESULTS

3.1 | The intersubjective avoidance test

The IA test measures the extent to which a rat will take action to avoid
another rat in distress. The IA test achieves this through intentionally
biasing an Observer rat’s physical location by providing the Observers
with an opportunity to avoid bright light. The relative strength of an
Observer’s active aversion to another rat’s pain - or “Intersubjective
Avoidance” - is then measured relative to its initial location bias. In
other words, the IA test pits intersubjective avoidance against light
avoidance to assess the extent of negative affect caused by witness-
ing another rat’s distress.

The IA test’s primary measure of interest is how long the Observer
spends in one of two outer chambers, both of which are sepa-
rated from an single inner chamber by a transparent wall with holes
(Preobrazhenskaya & Simonov, 1970). Rats naturally find bright light
aversive, as illustrated by the fact that they will press a lever to ter-
minate light stimuli at a rate that correlates with the light’s intensity
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(Campbell & Messing, 1969; Keller, 1941). Taking advantage of this
aversion, we kept outer chamber 1 dimly-lit and outer chamber 2
brightly-illuminated, which we hypothesized would induce an avoid-
ance of outer chamber 2 under normal conditions. Each daily session
(5 min), one “Receiver” was placed in the inner chamber, while one
“Observer” rat was placed in outer chamber 2 and allowed to run
freely between outer chambers 1 and 2 (see Figure 1a). No Receiver-
Observer pairs were cagemates, and rats were matched so that no
Receiver-Observer pair was repeated during testing.

During Baseline (5 days), Observers and Receivers were left un-
disturbed during the 5-min daily sessions. As predicted, Observers
exhibited “Light Avoidance”, or LA, during Baseline (mean dark pref-
erence = 58 + 77 (SD) seconds, significantly greater than zero in a
one-way repeated-measures ANOVA with cohort as a covariate,
Fi31=6.74, p=.01, Figure 1b “Baseline” panel), and preferred the
dark outer chamber all 5 days.

To assess rats’ response to other rats’ pain, we implemented
Testing 1 (5 days). During Testing 1, all conditions were kept the same
as Baseline except now Receivers received electrical shocks whenever
an Observer entered the dark chamber (three shocks every 10 sec-
onds; shocks continued until the Observer exited). We hypothesized
that if Observers disliked witnessing a Receiver’s distress more than
they disliked bright light, they should choose to reduce their light
avoidance—and perhaps avoid the dark chamber all together—during
Testing 1. We found that, indeed, as a group Observers perceived
Receivers’ distress to be equally aversive to bright light, because
“Testing Observers” (N = 33 spread across 4 cohorts) significantly de-
creased their LA during Testing 1 (F1,26 =6.77, p=.02 in a repeated-
measures ANOVA with cohort as a covariate; Figure 1b,c). Within this
general pattern of Testing Observers, many individual Observers had
extreme reactions and found witnessing other rats get shocked more
aversive than (as opposed to equally aversive to) being exposed to
bright light (Movie S1 and Figure 1d). These Observers demonstrated
innate “Intersubjective Avoidance” (“IA") by avoiding the dark cham-
ber, instead of the light chamber, during Testing 1. Overall, Testing
Observers’ change in LA contrasted with Control Observers (N = 10)
who were exposed to baseline conditions for the duration of the
experiment and who maintained their LA throughout Testing 1 (sig-
nificant interaction indicated that Testing and Control Observers’ LA
differed during Testing 1, but not during Baseline, F; 55 = 8.91, p < .01
in a repeated-measures ANOVA with cohort as a covariate; Figure 1b).

Visual inspection of the IA test videos suggested that Observers’
avoidance behavior was strongly tied to the Receivers’' distress.
However, to ensure that Observers’ |IA (or avoidance of witnessing
other rats get shocked) was not a nonspecific locomotor response due
to increased general arousal or distress rather than aversion, we ran a
control experiment in which Receivers were shocked when Observers
entered the light chamber instead of the dark chamber during Testing
(N =6 in each group). Under these conditions, Observers’ LA sig-
nificantly increased rather than decreased (F1,5 =5530,p<.01in a
repeated-measures ANOVA with cohort as a covariate, Figure 1e).
Thus, the direction of change in Testing Observers' chamber pref-
erence during the IA test is specific to the location of a Receiver’s

distress, confirming that Observers find exposure to Receivers’ dis-
tress aversive, not just generally arousing. Observer rats’ decisions
about where to move were tightly tied to how their actions related to

the experiences of the Receiver rat.

3.2 | Personal experience increases IA

Our experiments designed to find the neural correlates of IA would
benefit from Observers' 1A being as strong as possible. We hypoth-
esized that Observers’ IA would increase after having experienced foot
shock themselves, similar to how humans report more empathy for
harms they have personally experienced (Barnett, Tetreault, & Masbad,
1987; Eklund, Andersson-Straberg, & Hansen, 2009), and similar to
how rats open a door to let another rat escape a pool of water more
quickly if they have previously been exposed to the pool of water them-
selves (Sato, Tan, Tate, & Okada, 2015). We capitalized on Observers’
performance variability during Testing 1 to test this. Observers who
demonstrated little or no IA during Testing 1 were designated “Testing
1 Non-avoiders” (N = 18; see Methods for details about how groups
were chosen). We tested whether experience with foot shock would
increase their IA during an Interim Phase (1 day; Figure 2a). After
Testing 1, these animals were placed in the Receivers’ chamber with
no other rat present, and shocked with three shocks every thirty sec-
onds for the duration of the 5-min Interim Phase. Starting the next day,
Testing 2 commenced (5 days, identical to Testing 1).

We also tested whether rats that showed strong or intermediate
A in Testing 1, designated “Natural Avoiders” (N = 15), would continue
to show |Ain Testing 2. Since their |A was often already close to ceiling
(as indicated by some Observers spending most of each Testing ses-
sion in the light chamber), we tested whether their natural IA would
persist over time without being shocked during the Interim Phase.

Indeed, despite never experiencing shock themselves, Natural
Avoiders exhibited stronger IA than LA throughout Testing 1 and
Testing 2 (Natural Avoiders vs. Controls p < .01 for both Testing 1 and
2, planned comparison; Figure 2b-d). These rats were consistently
and persistently more motivated to avoid Receivers’ distress cues than
they were to avoid innately aversive bright light.

Testing 1 Non-avoiders had similar behavior to Controls during
Testing 1 (Testing 1 Non-avoiders vs. Controls: p =.17). However, as
a group they increased their IA (reduced their LA) steadily each day of
Testing 2 (Testing 1 Non-avoiders vs. Controls: p = .04, Figure 2b-d). The
fact that the group of Testing 1 Non-avoiders’ increased their IA in Testing
2 compared to Testing 1 illustrates that experiencing shock oneself usu-
ally enhanced rats’ negative subjective experience of witnessing shock to
Receivers. We exploited this observation in subsequent electrophysiol-

ogy experiments by subjecting all rats to shocks during the Interim Phase.

3.3 | Anatomical localization of IA

Having established a behavioral paradigm that elicited and maximized
IA in rats, we next implemented a strategy to determine the neural
mechanisms that manifest IA. Since the brain regions involved in IA
test performance were completely unknown, the first step of our
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approach was to use c-Fos (an immediate early gene used as an indica-
tor of neuronal activity; Clayton, 2000) immunoreactivity to screen for
brain regions that might be involved. We examined nine brain areas
chosen for their known involvement in self-reported human empathy/
social behavior or negative emotion in humans and rodents: anterior
cingulate (ACC), anterior insula (INS), orbitofrontal cortex (OFC), in-
fralimbic cortex (INF), prelimbic cortex (PRE), paraventricular nucleus
of the hypothalamus (PVN), olfactory amygdala (OAMY), central nu-
cleus of the amygdala (CE), and basolateral nucleus of the amygdala
(BLA) (Kim et al., 2015; Rilling & Sanfey, 2011; Stowers, Cameron, &
Keller, 2013). The relationships between IA and c-Fos immunoreactiv-
ity in these nine areas were examined in brains harvested one hour
after testing on the last day of Testing 2 (Figure 3, Table 2).

All regions had elevated c-Fos immunoreactivity in the Receivers
compared to Controls (Figure 3a). Most brain regions also had elevated c-
Fos immunoreactivity in the Observers compared to Controls (Observers’
c-Fos immunoreactivity in the BLA and CE was greater than the Controls
who preferred the Light, but not the Controls who preferred the Dark;
the OAMY was the only brain region with elevated c-Fos immunoreac-
tivity in the Controls compared to Observers), consistent with human
neuroimaging studies showing overlapping but distinct patterns of hemo-
dynamic activity when humans receive versus observe pain (Bernhardt &
Singer, 2012). Observing and receiving distress also invoked distinct pat-
terns of neural activity. CE, OAMY, PVN, INF, and ACC activity was higher
in Receivers than Observers, while BLA, PRE, OFC, and INS activity was

(sometimes slightly) higher in Observers than Receivers.
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More instructive, of the nine brain regions that had elevated c-Fos
immunoreactivity in Observers compared to Controls, only three cor-
related with individual differences in Observers’ IA: ACC, OFC, and
OAMY (Figure 3b, 3c, Table 2). The INS also approached significance
(p = .08). Remarkably, the ACC could account for 76% of the variance in
individual rats’ IA in Testing 2, 59% in Testing 1 + 2, and 48% on the day
of perfusion (Table 2). Furthermore, sequential hierarchical regressions
that incorporate brain regions into regression models one at a time in-
dicated that the ACC was the only brain region that could account for
unique IA variance above and beyond the effects of the other brain re-
gions tested (Table 3). These results demonstrate anatomical selectivity;
although almost all brain regions had elevated c-Fos immunoreactivity
in Observers compared to controls, only three of those brain regions (or
four, if considering the correlations that approached significance in the
insula) had c-Fos immunoreactivity that correlated with individual differ-
ences in IA performance. Having identified the ACC, OFC, OAMY, and
INS as IA-encoding brain regions using c-Fos, next we determined how
these brain regions interacted while rats made intersubjective decisions.

3.4 | The elastic net strategy for identifying brain
oscillations that encode IA

Since decision-making and social processing requires multiple brain
regions (Barrett & Satpute, 2013; O’Connell & Hofmann, 2011; Ruff &
Fehr, 2014; Stanley & Adolphs, 2013), and many of the brain regions

that contribute to social decision-making can have multiple different

TABLE 2 Pearson correlations between Testing Observers' |A test performance and c-Fos immunoreactivity

Intersubjective avoidance

Average IA
Intersubjective avoidance (Testing 1)
Average IA (Testing 1) -
Average IA (Testing 2) 0.51*
Average IA (Testing 1 + 2) 0.81**
IA on Perfusion Day only 0.58**
Brain region
Anterior Cingulate (“ACC”, N = 15) -0.36
Olfactory Amygdala (‘OAMY”, N = 14) -0.31
Orbitofrontal Cortex (“OFC”, N = 16) 0.01
Anterior Insula (“INS”, N = 17) -0.06
Central Amygdala (“CE”, N = 16) 0.01
Paraventricular Nucleus (“PVN”, N = 15) 0.26
Basolateral Amygdala (“BLA”, N = 17) -0.19
Infralimbic Cortex (“INF”, N = 16) -0.25
Prelimbic Cortex (“PRE”, N = 17) -0.09

Average IA Average IA (Testing IA on
(Testing 2) 1+2) Perfusion Day
0.92** - -
0.89** 0.90** -
-0.87** -0.77** -0.69**
-0.55* -0.49*** -0.27
-0.5* -0.34 -0.26
-0.43*** -0.35 -0.35
0.34 0.28 0.44
0.31 0.34 0.30
0.28 0.14 0.36
0.05 -0.06 0.27
0 -0.02 0.19

The values in the table represent the Pearson correlation between the entity in the column header and the entity in the row header. Natural Avoiders,
Testing 2 Avoiders (who avoided during Testing 2 but not Testing 1), Non-avoiders, and Inverse Responders (who spent more time in the dark chamber
during Testing) were included in these analyses. A Dark Preference Testing 1 = average dark preference across 5 days of Testing 1 - average dark preference
across 5 days of Baseline. A Dark Preference Testing 2 = average dark preference across 5 days of Testing 2 - average dark preference across 5 days of
Baseline. A Dark Preference Testing 1 + 2 = average dark preference across 10 days of Testing 1 and 2 - average dark preference across 5 days of Baseline.
A Dark Preference Perfusion Day = dark preference on day of perfusion - average dark preference across 5 days of Baseline.

**p < .01, *p < .05, ***p < .08.
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TABLE 3 Hierarchical regressions assessing relationship between
c-Fos expression and IA during Testing 2

SE i AR?

ACC c-fos entered first

Step 1: ACC c-fos 5.27 -0.89 0.79**
Model 1

Step 2: OAMY c-fos 2.11 -0.10 0.01

Step 3: OFC c-fos 0.47 -0.19 0.03
Model 2

Step 2: OFC c-fos 0.45 -0.20 0.03

Step 3: OAMY c-fos 2.10 -0.06 <0.01
Cortical c-fos entered first

Step 1: OAMY c-fos 3.14 -0.55 0.31*
Model 1

Step 2: ACC c-fos 6.46 -.837 0.49**

Step 3: OFC c-fos 047 -0.19 0.03
Model 2

Step 2: OFC c-fos 0.77 -0.40 0.14

Step 3: ACC c-fos 6.60 -0.77 0.38**
OFC c-fos entered first

Step 1: OFC c-fos 0.76 -0.56 0.31*
Model 1

Step 2: ACC c-fos 5.64 -0.80 0.51**

Step 3: OAMY c-fos 2.10 -0.06 <0.01
Model 2

Step 2: OAMY c-fos 3.18 -0.40 0.14

Step 3: ACC c-fos 6.60 -0.77 0.38**

ACC, anterior cingulate; OAMY, olfactory amygdala; OFC, orbitofrontal
cortex. Since the highest correlations found in Table 2 were with IA aver-
aged across Testing 2, Average IA (Testing 2) was used as the dependent
variable in these hierarchical regressions. c-Fos activity in the ACC, OAMY,
and OFC were entered as step-wise independent variables. AR2 rep-
resents the variance in IA that can be accounted for by the c-fos in the
brain region of that step after the variance accounted for in previous steps
is removed. SE and B represent the standard error and beta, respectively,
associated with the regression model at that step. The ACC and OAMY
variables were square-root transformed to improve normality. All collected
testing Observer brains were included in these analyses.

**p < .01, *p < .05.

functions, we hypothesized that the functions the ACC, OFC, OAMY,
and INS execute during an intersubjective decision would be based
on not only the activity within each brain region, but also how that
activity was coordinated with activity occurring in other brain regions
(Mclntosh, 1999; O'Connell & Hofmann, 2011; Park & Friston, 2013;
Pessoa, 2014; Teles et al., 2015). Local Field Potentials are powerful
tools for measuring behaviorally-relevant coordinated brain activity
(Akam & Kullmann, 2014; Buschman & Kastner, 2015; Henry et al.,
2014; Voytek & Knight, 2015). By analyzing different frequencies of
LFPs from many brain regions simultaneously, in theory, it is possible
to combine calculations of LFP power and LFP coherence to exam-

ine neural activity within brain regions at the same time as examining

information passed between brain regions. This information can then
be used to infer the structure of spatially-distributed functional neural
networks with good temporal and spatial resolution.

To examine how brain regions work together to encode intersub-
jective decisions, we recorded LFPs bilaterally from all of the brain re-
gions whose c-Fos immunoreactivity predicted differences in individual
Observers’ IA while rats performed the IA test. The regions recorded
from included the ACC, OFC, OAMY, and INS; we also recorded LFPs
from the bilateral BLA due to a previous report of BLA LFP activity in
observational fear conditioning (Jeon et al., 2010). In total, 30 channels
of LFPs spread across all 10 brain regions (the aforementioned five brain
regions bilaterally) were collected wirelessly and simultaneously from a
cohort of seven rats with a custom-designed headstage (Figure 4a,b).

Our unique surgical strategy allowed us to record LFPs simultane-
ously from 10 spatially separated brain regions, but it also posed new
statistical challenges not posed by studies that examine only one or two
brain regions. If we examined the relationship between each LFP pre-
dictor and |IA independently, we would have to ignore the established
relationships within bands of LFP predictors and would encounter chal-
lengeswith multiple comparison corrections thatare overly-conservative
in situations where independence is violated (Johnson et al., 2010). If
we examined the relationship between all of the LFP predictors and
IA in one model, the relationship between predictors would be taken
into account, but we would encounter the high-dimensionality and
high-correlation problems (see the Supplementary Methods section of
the Supporting Information for a more information about these prob-
lems). We used an elastic net (ENET) regularized regression strategy
borrowed from the machine learning field (Zou & Hastie, 2005) to ad-
dress these challenges. Our ENET procedure modeled the relationship
between IA (7 rats across 10 Testing days, for a total of 70 behavioral
data points) and (1) the power in 1 Hz-wide oscillation bands from 1
to 100 Hz averaged across all the electrodes implanted in each of the
ACC, OFC, INS, BLA, and OAMY (1000 predictors when all electrodes
in a brain region are averaged) and (2) the magnitude of coherence in
1 Hz oscillation bands from 1 to 100 Hz in each possible pair of these
brain regions (4500 predictors when all electrodes in a brain region are
averaged) (Figure 4e). In doing so, the ENET framework permitted us
to infer the frequency composition and boundaries of oscillation bands
relevant to IA in a joint, data-driven fashion, even though such oscilla-
tions were highly correlated and far more oscillations were measured
than behavioral data points (see the Supplementary Methods section
of the Supporting Information for a full discussion).

By taking advantage of the elastic net framework, we were able
to examine simultaneously in one statistically valid model the rela-
tionship between IA and all 5500 neural predictors that represented
frequency-specific oscillations within and between ten brain regions.
If coherence predictors were retained in the ENET solution, it would
indicate that oscillatory relationships between brain regions accounted
for unique variance in 1A and were required to optimally describe be-
havior. The ENET framework thereby provided us with a strategy for
inferring what “neural context”, if any, was related to empathy’s in-
fluence on rats’ intersubjective judgments and behaviors, despite the
large number of neural predictors compared to behavioral data points.
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Of note, the ENET regularization framework works by estimating
models using many combinations of possible penalty parameters, and by
applying cross validation procedures to identify the penalty parameters
that minimize the mean squared error in predicting a dependent variable.
Since the number of included predictors is dynamic in this procedure, no
strategy has yet been developed to characterize the degrees of freedom
in an ENET model, which in turn means that there is also no currently
accepted method for applying traditional p-values to ENET models
(Lockhart, Taylor, Tibshirani, & Tibshirani, 2014). Despite these differ-
ences from traditional nonpenalized statistical methods, all predictors
retained in an ENET solution are considered statistically interpretable.

3.5 | Oscillations within and between brain
regions are required to optimally encode 1A

We acquired LFP recordings during all days of Baseline and Testing
of the IA test. All seven Observers we recorded from were given
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experience with shock during the Interim phase to maximize IA dur-
ing Testing 2. Neither the surgical nor recording procedures dramati-
cally interfered with IA test performance; six of the seven rats reduced
their dark preference during Testing 1 compared to Baseline and the
cohort’s overall IA approached significance during Testing 1 (p = 0.08)
and achieved significance during Testing 2 (p = .02; Figure 5a). Thus,
IA was induced in our electrophysiological cohort.

Unless otherwise specified, the results we describe are from mod-
els that use change in dark preference on one testing day compared to
the average dark preference during Baseline as the dependent vari-
able, and the change in electrophysiology measures averaged across that
testing day compared to those averaged across 5 days of Baseline as
predictors (see Methods and Materials for details). This is a critical
point, because all rats demonstrated light avoidance during Baseline.
Therefore, the behavioral measure used in our statistical model as-
sessed the relative strength of each rat’s intersubjective avoidance
compared to their light avoidance, and the neural predictors used in

@ - * - (b)
r 1’ 1T * 1
300 A
0
o 2004 : -+ Rat A | !
= = RatB s '
£ Q@
5 100 1 . Rat C % Z
= Sa = ]
S 0 Rat D ° 2
[a)] o L,
- Rat E c .
o It o
‘s -100 - Rat F k] 3
Q [a)
< = RatG < *
ug -200 ~ : '_.-‘ —=— Group b
& b Mean
-300 . . . . . . .
Baseline Testing 1 Testing 2 -500 0 300
Day A Dark Preference (sec)
() 30 (d) 15 (e) 60
[ ]
[ ]
. ’ IS .
o 2 0 . § ’ b
@ ¢ % ¢ € i @ K
= 0 o ° € !
S o 0 40 0 o o o e, = ,
o 0 00 ° (G] ’*, o Y /
=< ./,/./ ; ~Q..\ . x k.__‘.' 8 . R /
© . . 0. 8" B
5 S TR 8 R T N
2 | N B S N
< ’ 0 N < Ly o (o - \‘\. ..'/ *.
. N S R PR X T g
° o ° “\ 7 S I % vy AT
7 0 [] o."..
. /7 0 0 L
o [
- L L L L L L 1 ) -35 L L L L L L L ] -10 1 1 1 1 1 1 1 I
-500 0 300 -500 0 300 -500 0 300

A Dark Preference (sec)

A Dark Preference (sec)

A Dark Preference (sec)

FIGURE 5 Behavior of Electrophysiology Cohort. (a) Observers implanted with microwires show Intersubjective Avoidance (lA). * p = .02.

1 p =.08. (b, c) The total distance traveled (circles), number of transitions made by observers (stars), and A % Dark Rearing were correlated in

an inverse U-shaped curve with IA (quadratic fits p < .01; linear fits were not significant). (d, e) IA had quadratic relationships with A % Dark
Grooming and A % Dark Social Investigation (p < .01), as well as linear relationships with A % Dark Grooming (Pearson correlation = -0.37,

p <.01; Spearman’s rho = -0.36, p < .01) and A % Dark Social Investigation (Pearson correlation = -0.32, p < .01; Spearman’s rho not significant).
The data points associated which each rat are color-coded in each panel



SCHAICH BORG ET AL.

14 of 25 WI LEy_Brain and Behavior

Open Access,

our statistical model represented neural activity that differed from
time periods when rats were exhibiting light avoidance. As such, the
neural features identified by our analysis should reflect the networks
that are preferentially engaged or disengaged during intersubjective
avoidance, rather than those equally engaged by all types of avoid-
ance, in general.

We hypothesized that the neural responses that would be most
relevant to an Observer rat’s intersubjective decisions would be those
elicited when the Observer was witnessing a Receiver get shocked, be-
cause the averseness of the experience is presumably what motivates
the observed IA. Thus, we began by applying the ENET framework to
a penalized regression that regressed IA (defined as the change in dark

preference for each Testing day compared to Baseline) on LFP activity
averaged across only time points when Observers were in the dark
chamber (therefore only when Observers were witnessing Receivers
get shocked). Across all analyses, our ENET procedure did not select
one sole oscillation predictor within a highly correlated band (which
would suggest over-sparsity) or assign all neural predictors with coef-
ficients (which would suggest under-sparsity) (Figure 6a).

Critically, we found that the ENET solution contained both power
and coherence parameters (Figure 6a). This result indicates that power
and coherence measurements were required to optimally describe the
IA of the rats in this study. In other words, the relationship of activity
between brain regions carried unique information about how a rat will
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decide to respond to another rat’s pain, above and beyond signals from
any set of brain regions in isolation.

Visual inspection of the ENET-Dark analysis illustrated distrib-
uted IA neural networks characterized by three data-driven frequency
bands of oscillations whose predictors correlated with IA in the same
direction (Figure 6a): 4-6 Hz (“theta”, although typical theta bands are
defined as 4-8 Hz), 8-12 Hz (alpha), and 40-60 Hz (low gamma). Theta
oscillations correlated negatively with IA. These theta oscillations were
observed almost exclusively within the OFC (power predictors), or be-
tween the OFC and the ACC (coherence predictors). In stark contrast,
alpha power correlated positively with 1A and was observed widely
across almost all brain regions tested. The alpha oscillations were ob-
served as power predictors within almost all brain regions tested, and
were observed as coherence predictors between brain regions primar-
ily when an amygdalar region was involved (and not observed often as
coherence predictors between brain regions when an amygdalar region
was not involved). Interestingly, 1A-signaling low gamma oscillations
were even more prevalent than alpha oscillations, and were observed
both within and between most brain regions tested.

I1A-signaling 65-85 Hz (high gamma) oscillations had a very differ-
ent pattern than any of the other oscillatory bands observed. Some high
gamma oscillatory power was observed within the ACC that correlated
positively with IA. Almost all other high gamma oscillations correlated
negatively with IA, were between brain regions, and were dominated
by synchrony with the INS. This was notable given that alpha power
and low gamma power within the INS, as well as alpha and low gamma
coherence between the INS and other brain regions, correlated posi-
tively with IA. These results indicated that the INS might be involved
in more than one opposing contributions to intersubjective decisions.

Visual inspection of the ENET-Dark analysis revealed some pre-
dictors in 12-40 Hz and 85-100 Hz ranges in addition to the ranges
described above, but the patterns of predictors in the in 12-40 Hz and
85-100 Hz ranges were much more sparse and did not necessarily
correlate with IA in the same direction (Figure 6a).

Importantly, 1A-encoding oscillations were largely absent when
Observers were in the light chamber, except for a band of theta power
in all regions but the ACC that correlated negatively with IA (ENET-
Light; Figure 6b). Thus, the oscillatory responses that signaled IA were
different from those elicited by bright light, were temporally specific,
and occurred in response to witnessing another rat get shocked, not
while avoidance was underway.

The ENET framework implements “feature selection” and “fea-
ture estimation” simultaneously. We used a leave-one-rat-out cross-
validation analysis to assess the reliability of each of these aspects of
the ENET solution respectively. The ENET framework’s feature selec-
tion was not driven by a single animal, because the features of the ENET
results were similar when single animals were removed from a model
(SI Figure 1). Across all cross-validation sets (where the data from one
rat was removed in each set), the predictors that had zero coefficients
matched approximately 90% of the time (see Materials and Methods
for details of how this percentage is calculated). The median true nega-
tive rate (median absolute deviation), or “TN”, was 0.90 (0.05). The pre-
dictors that had nonzero coefficients matched approximately 62% of
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the time; the median true positive rate (median absolute deviation), or
“TP” was 0.69 (0.06). Within these, the predictors that had coefficients
with absolute values greater than 6, 5, 4, 3, 2, or 1 in the ENET-Dark
analysis had nonzero coefficients in the cross-validation sets approxi-
mately 98%, 96%, 94%, 90%, 85%, and 78% of the time (S| Table 1; the
Supplementary Methods section of the Supporting Information for de-
tails of how these rates were computed). Therefore, neural predictors
with large coefficients in the primary ENET-Dark analysis (having ab-
solute values of >3) had nonzero coefficients in almost every reduced
model as well. Although there was an overall median false negative
(FN) rate of 0.31 (0.06) and false positive (FP) rate of 0.10 (0.04) across
the cross-validation sets, the mean and medians of the absolute value
of the magnitudes of such unmatched coefficients were all <1 (Sl Table
2). Therefore, predictors that were not consistently retained across
the ENET-Dark and ENET-Leave-One-Rat-Out analyses had very small
coefficients. The overall mean root mean squared error and standard
deviation across the cross-validation sets was 1.26 (0.14) for TPs, 0.98
(0.22) for FNs, and 0.99 (0.11) for FPs, where the scale of the erroris on
the same scale as the coefficients. This indicates that the magnitudes
of the coefficients retained in the models across the cross validation
sets were relatively consistent. Put together, these analyses indicate
that neural predictors with small coefficients in the primary ENET-Dark
analysis should be interpreted with more caution, but overall the fea-
tures retained in the ENET results were stable and reliable, and the
details of the predictors with large coefficients could be interrogated
further to discern candidate brain network dynamics that encode IA.

The magnitudes of the weights applied to each predictor retained
in the ENET solution were more sensitive to specific animals than the
identity of the predictors retained in the model. Overall, the ENET
solution fit the seventy behavioral data points moderately well, but
systematically underestimated very low and high values of IA, most of
which were performed by rats C, D, and F (Sl Figure 2a, 2c). As would
be expected, then, the ENET model did a poor job of predicting the IA
of those rats when they were left out of the training data (Sl Figure 2b).
In contrast, the ENET did a moderate to good job of predicting the IA
of rats A, B, E, and G when they were left out of the training data. Put
together, the MAE fraction of the ENET model using the leave-one-
rat-out analysis was 0.76 (where MAE fraction is the median predicted
error relative to a null model that predicts the median IA value for every
data point; see Materials and Methods). This modest MAE fraction is
comparable to the model fits reported by other attempts to predict be-
havior with neurological data in highly-correlated high-dimensional set-
tings (Lu, Yang, Lin, Li, & Wei, 2013; Manolio et al., 2009; Wager, Atlas,
Leotti, & Rilling, 2011), but indicates that the LFP predictors identified
by our ENET analysis encode middle ranges of IA much better than ex-
treme values of IA. Rats with extreme behavior may be recruiting brain
regions outside of those recorded from in this study.

3.6 | Relationships between IA-signaling Oscillatory
Networks and Related Behaviors

To assess whether |A-encoding oscillations identified by the ENET-
Dark analysis could be explained or confounded by changes in other
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more detailed behaviors, we assessed the relationships between IA,
locomotion, rearing, grooming, and social investigation. The relation-
ships between IA and LFP activity discussed above are not likely fully
explained by changes in locomotor activity or rearing, because IA had an
inverse-U shaped relationship with both locomotor activity and change
in percent dark chamber rearing (p <.01 for distance and change in
transitions; p = .01 for percent dark chamber rearing) and linear relation-
ships between IA and these variables were not significant (Figure 5b,c).
However, IA did have both linear and quadratic relationships with
changes in percent dark chamber grooming and social investigation
(Figure 5d,e). Overall, when Observers exhibited more IA (had greater
reductions in time spent in the dark chamber), they spent smaller per-
centages of their time in the dark chamber engaged in social investi-
gation (according to parametric correlations, but not nonparametric
correlations; Pearson correlation(r) = -.32, p <.01; p for Spearman’s
rho (r)=.19) or grooming compared to Baseline (r=-.37, p<.01;
r,=-.36, p<.01). Significant quadratic relationships also indicated
that sometimes Observers with strong |A spent a greater percentage
of time engaged in social investigation, and occasionally grooming, as
well (Figure 5d, e). Thus, the LFP measurements used the ENET - Dark
analysis were confounded by systematic changes in the amounts of so-
cial investigation and grooming. Visual investigation of the relationships
between changes in social investigation/grooming and LFP activity sug-
gest that some of the ENET - Dark results might indeed be influenced
by differences in social investigation/grooming, especially coherence in
the lower frequencies or high gamma frequencies (Sl Figures 3, 4). If
true, these relationships would be challenging to disentangle, given that
social investigation and grooming have linear relationships with IA in
the same direction, quadratic relationships with IA in opposite direc-
tions, and have correlations with each other that approach significance
(Pearson coefficient = -0.23, p = .06). Further, changes in grooming and
social investigation correlate with multiple EA-encoding LFP predictors
in opposite directions, despite their first order linear correlation with EA
is in the same direction (see, in particular, 8-18 Hz coherence that cor-
relates positively with changes in grooming but negatively with changes
in social investigation; Sl Figures 3, 4). Overlapping relationships of this
kind are known to create suppressor effects and coefficient flipping in
regression analysis (Friedman & Wall, 2005; Ganzach, 1997; Julious &
Mullee, 1994), but have not been addressed in p>> n settings.

To gain insight into whether the linear relationships between
changes in social investigation/grooming and LFP activity might ex-
plain some of the relationships observed between IA and LFP activity,
we regressed IA on changes in percentages of dark chamber social
investigation and grooming to remove the variance in IA that could be
accounted for by social investigation and grooming. We then repeated
the ENET procedure with the residuals from this analysis as the de-
pendent variable. The results replicated many of the LFP relationships
identified in our previous analyses, although the coefficients for most
of the predictors were smaller (S| Figure 5), and the MAE fraction in-
creased to 0.89 (larger numbers indicate poorer model fit). In addi-
tion, although the general patterns of LFP parameters in the alpha,
theta, low gamma, and high gamma bands remain the same, the pre-
cise boundaries of these bands sometimes shifted in the 1A-Residuals

ENET-Dark analysis compared to the IA ENET-Dark analysis in the re-
gions where social investigation and grooming correlated with IA in
opposite directions (see the alpha coherence between the INS or OFC
and other brain regions for examples). Thus, changes in social investi-
gation and grooming contribute and interact with some of the patterns
observed between IA and LFP activity, but they likely do not account
for all the observed relationships.

As another exploratory investigation, we ran a correlation analysis
to examine how IA-encoding oscillations might compare to LA (light
avoidance)-encoding oscillations (Figure 7a). Spearman Rank coef-
ficients were computed between neural predictors while Observers
were in the light chamber during Baseline and LA (Figure 7b), and a
separate set of Spearman Rank coefficients were computed between
neural predictors while Observers were in the dark chamber during
Testing and IA (Figure 7c). The ENET framework could not be applied
reliably to the LA models due to the fact that we had half as many
behavioral data points during Baseline as we did during Testing, so
the individual Spearman Rank coefficients we present should not be
interpreted strongly. Nonetheless, this exploratory analysis makes it
clear that while some alpha power oscillations might be common to
both types of avoidance, many of the alpha coherence oscillations and
almost all of the low gamma oscillations are unique to IA. In contrast,
it appears that LA might be preferentially encoded by beta (25-40 Hz)
oscillations. These exploratory findings will need to be replicated and
confirmed, but they support an interpretation that rat intersubjective
decisions are encoded by specific frequencies of oscillations between
brain regions that have multiple functions within emotional process-
ing, social cognition, and decision-making, and that the frequencies
of those oscillations likely determine the selective role those brain re-
gions play during intersubjective decision-making.

3.7 | Phase synchronization: a mechanism for the
relationship between oscillatory networks and IA

The first set of ENET results indicated that synchrony between brain
regions can have unique functional relevance distinct from—and
sometimes even in opposite directions from—activity within partici-
pating brain regions. Next, we wanted to determine which aspects
of between-region synchrony could best explain its correlation with
IA. The long-range oscillatory synchronization reflected by LFP coher-
ence can be affected by two different types of synchrony (Canolty
et al., 2010; Wang, 2010). Amplitude correlation occurs when the
magnitude of specific frequencies of LFP power are systematically re-
lated. Phase coherence occurs when the peaks and valleys of specific
frequencies of LFPs align. Amplitude correlation and phase coher-
ence can occur simultaneously, but they can also occur independently
(Siegel, Donner, & Engel, 2012; Srinath & Ray, 2014; Womelsdorf
et al.,, 2007). In order to determine whether phase coherence, on its
own, would relate to individual differences in IA, we bandpass filtered
individual 1-Hz frequency bins of each recorded LFP signal and com-
puted their instantaneous phase. Phase coherence was measured
by computing the mean resultant length (MRL) of the instantaneous
phases of two LFP signals while an observer was in the dark chamber
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on a given day; a MRL value of O indicated that the phases of the
two signals were completely uncorrelated and random, while an MRL
value of 1 indicated that the phases of the two signals were perfectly

in sync. We then repeated the ENET-Dark analyses retaining all of

Frequency (Hz)

the original LFP power values, but replacing coherence values with
MRL values (ENET - Dark MRL). This analysis allowed us to determine
whether |IA was encoded by the phase relationships of specific fre-

quencies of oscillations between brain regions.
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We found that MRL values signal IA through patterns that are
similar to those observed with coherence (Figure 8a), even when the
residuals of IA regressed on grooming and social interaction are used
(SI Figure 6). These results indicate that the individual differences in
IA measured in this study could be at least partially explained by how
well the phase relationships of oscillations in a distributed network
that spans the ACC, INS, OFC, BLA, and OAMY are temporally aligned.

3.8 | Directionality of IA-signaling network
oscillations

The ENET analyses suggested that different bands of coherence be-
tween brain regions encoded moderate values of IA in different ways.
To gain greater insight into what functions might be encoded by
those coherence bands, we designed a directionality analysis to de-
termine whether the phases of IA-encoding oscillations in one brain
region reliably lead or followed the phases of the same frequency
of oscillations in other brain regions (Kumar etal., 2014; Likhtik
et al.,, 2014). We focused this analysis on the frequency bands and
brain pairs whose coherence signaled IA in the ENET-Dark analyses.
Directionality was computed for the time points when an Observer
was in the dark chamber for all the predictors retained in the ENET-
Dark solution, which roughly fell into the four data-derived, function-
ally distinct bands discussed in the “Oscillations Within and Between
Brain Regions are Required to Optimally Encode IA” section: theta
(4-6 Hz), alpha (8-12 Hz), low gamma (40-60 Hz), and high gamma
(65-85 Hz). These analyses allowed us to determine whether phase-
related signals in one brain region of each of these IA-signaling fre-
quency bands led or lagged those in another brain region, and if so,

by how much.

; F -10 hemisphere regions are outlined in gray,
90 100

right hemisphere regions have no outline.
The bands depicted in the gray box, chosen
Usadlor by visual inspection of the ENET-Dark and
Directionality the ENET-Dark MRL results, were analyzed
Analyses for directionality

Strikingly, when directionality was present in theta-like frequen-
cies, it was predominantly from the cortical regions (ACC, INS, and
OFC) to amygdalar regions (BLA and NLOT) (Figure 9a, b, d). In con-
trast, directionality in alpha frequencies was always in the opposite
direction, from amygdala to cortical regions (Figure 9a, c, d). In ad-
dition, alpha signals in amygdalar regions preceded those in INS and
OFC, which in turn preceded those in the ACC. Little directionality
was observed in low or high gamma bands, but when it was observed,
insular activity preceded amygdalar regions (low gamma), or amygdalar

regions preceded primarily the insula (high gamma).

4 | DISCUSSION
Intersubjective decisions are the result of many interacting cognitive
processes that collaborate to ultimately manifest actions that reduce
others’ pain (Barrett & Satpute, 2013; Betti & Aglioti, 2016). We have
provided evidence that frequency-specific oscillations between spa-
tially distributed brain regions involved in social cognition and nega-
tive emotion may serve as a mechanism by which some of these
cognitive processes are coordinated. This evidence was made possible
through an interdisciplinary experimental approach that incorporated
a new behavioral paradigm to assess intersubjective avoidance (IA) in
rats, c-Fos mapping to identify brain regions likely to be involved in
IA, and the adaptation of penalized regression methods for multisite
LFP recordings measured from ten spatially distributed brain regions.
The behavior we describe in this study demonstrates that witness-
ing another rat in distress is aversive to observing rats. These obser-
vations add to a growing literature showing that nonhuman species

make intersubjective decisions (Bartal, Decety, & Mason, 2011; Bartal,
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Rodgers, Sarria, Decety, & Mason, 2014; Jeon et al., 2010; Langford
et al., 2006; Panksepp & Lahvis, 2011; Sato et al., 2015), and advance
previous rodent behavioral studies by illustrating that rat intersub-
jective decisions cannot be explained solely by generalized arousal.
While this growing literature is exciting, it is important for the field to
continue developing new tasks that can provide deeper insight into
how similar rodent intersubjective decisions are to humans’ social de-
cisions. In particular, although rat IA is likely to be related to some
aspects of human empathy, at present it is unclear whether the IA test
described here is useful for studying altruistic intentions or conscious
understanding of another’s pain. The IA test does not examine what
motives Observers have when they demonstrate IA, and therefore
cannot determine whether Observers’ |A is primarily self-interested
(perhaps to reduce shared fear, for example), and it remains unknown
whether Observer rats can consciously understand other rats’ pain.
Be that as it may, the present study does demonstrate that the IA test
is useful for studying “negative intersubjectivity”, or the phenomenon
of having a negative subjective experience when another individual is
having a negative experience. Negative intersubjectivity is a consis-
tent predictor of human prosocial behavior and a strong inhibitor of

violent behavior, regardless of whether an human actor consciously

Region A Leads
Directionality (ms)

Region A Follows Region A Leads
Directionality (ms)

understands the pain other people are going through (Schaich Borg,
2016). In addition, negative intersubjectivity is a developmental an-
tecedent to more sophisticated moral behaviors in humans, and may
ultimately contribute to phenomena like altruistic intentions or the
recognition of moral content (Pfaff & Sherman, 2015; de Waal, 2012).
Thus, understanding how the brain encodes decisions motivated by
negative intersubjectivity may provide avenues for studying the neu-
ral mechanisms underlying human decisions to act in ways that alle-
viate others’ pain; future research will hopefully provide more insight
into how such decisions relate to different conceptions of “empathy”
(Schaich Borg, 2016).

The brain regions we recorded LFPs from in this study were se-
lected through c-Fos assays. c-Fos immunoreactivity was elevated in
Observers in most of the brain regions examined. This result confirms
that Receivers’ distress is very salient to Observers, and is consistent
with the interpretation that Receivers’ distress is aversive. Despite this
general elevation across social cognition brain areas, only c-Fos immu-
noreactivity in the ACC, OFC, and OAMY (and marginally the INS) cor-
related with individual differences in IA. The c-Fos results are strikingly
similar to neuroimaging studies reporting that humans’ self-reported

empathy for another person correlates linearly with ACC activity and
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INS activity evoked by observing that person in pain (Bernhardt &
Singer, 2012). The c-Fos results are also consistent with neuroimag-
ing studies implicating the amygdala and OFC in empathic processing
(Betti & Aglioti, 2016). Overall, c-Fos expression in the brain areas pre-
viously shown to be involved in human empathy seem to selectively
signal individual tendencies toward IA in rats.

Once the bilateral ACC, OFC, OAMY, and INS were identified as
candidate brain regions through c-Fos analyses, our surgical strategy
allowed us to examine LFP signals bilaterally in these regions (in ad-
dition to the BLA) while rats performed intersubjective decisions. For
the first time in rats, these recordings provided a broad view of LFP
networks in the brain that are related to intersubjective decisions.
Plots of the independent correlations between LFP and IA illustrated
that multiple bands of power and coherence LFP predictors correlated
with Observer Rats’ IA (Figure 7c). The ENET framework allowed us to
infer in a data-driven fashion the relationship between LFP parameters
and |A when the strong relationships between power and coherence
predictors were taken into account. The leave-one-rat out analyses
demonstrated that the LFP features retained in the ENET solutions
were robust across cross-validation sets. The magnitudes of the ENET
coefficients were less resilient to differences in training data in these
analyses. While the ENET solution captured intermediate values of 1A
fairly well, it could not accurately predict extreme demonstrations of
IA or lack of IA (Sl Figure 2). When the animals spent almost all of a
testing day in the light chamber or the dark chamber, the absolute
values of |A patterns predicted by the ENET - Dark model were dra-
matically shifted upward or downward respectively.

One possible reason the ENET - Dark model did not predict strong
IA accurately might be that very few LFP samples were collected from
the dark chamber when animals were exhibiting strong IA, since by
definition, animals were strongly avoiding the dark chamber. An inter-
esting result that might give further insight into why the ENET - Dark
model did not predict extreme IA well was that c-Fos immunoreac-
tivity in the present study correlated most strongly with average 1A
during Testing 2, rather than IA on the day of perfusion. For example,
ACC c-Fos accounted for 76% of the variance in individual rats’ IA in
Testing 2, 59% in Testing 1 + 2, but only 48% of the variance in individ-
ual rats’ IA on the day of perfusion.

Put together, the ENET-Dark and c-Fos results suggest that while
the regions recorded from in this study might be highly involved in
intermediate levels of |A and initial demonstrations of behavior, other
brain regions that we did not record from may become involved once
the avoidance behavior is learned. Relevant observations have been
made during studies of active avoidance where animals need to learn
to move to a certain part of a testing arena in order to avoid receiv-
ing an electrical shock. Fear responses have a U-shaped relationship
with avoidance in these contexts; although fear is initially needed to
motivate the avoidance response, fear responses to the conditioned
stimuli decrease dramatically once consistent avoidance responses
have been performed (Kamin, Brimer, & Black, 1963). Likewise, the
cortical electrophysiological patterns of animals who have been well-
trained in an avoidance task are more similar to those evidenced

during quiescent, deactivated states than highly arousing or fearful

states (Castro-Alamancos, 2004). Thus, the motivating systems that
help establish avoidance behavior are not the same as those that main-
tain avoidance behavior (Kamin et al., 1963). One possible explanation
for the poor prediction of extreme IA in the present study might be
that the brain regions we recorded from are involved in motivating
intersubjective avoidance, but other brain regions become involved
once the avoidance is fully learned and established. This could also ac-
count for why c-Fos immunoreactivity in the present study correlated
most strongly with average IA during Testing rather than IA on the day
of perfusion. c-Fos is not expressed during all kinds of neural activity
(Clayton, 2000), and c-Fos expression is often reduced or completely
absent once a task has been mastered or fully learned (Bertaina-
Anglade, Tramu, & Destrade, 2000). Many of the Natural Avoiders in
the c-Fos experiments consistently exhibited IA throughout the last
days of testing, so they may have fully learned the contingencies of the
|A test which would in turn alter their c-Fos expression during the final
Testing days. Brain regions that are important for initiating avoidance
even after it has been learned include the basal ganglia and substan-
tia nigra pars reticulata (Hormigo, Vega-Flores, & Castro-Alamancos,
2016). It would be interesting to determine in future studies whether
IA on perfusion day correlates better with c-Fos in these areas than
with c-Fos in the ACC.

It is also important to acknowledge that while strongly negative
IA was rarely observed in this study, Rat D in the electrophysiology
cohort (Figure 5a) and approximately three animals in the purely be-
havioral cohorts (Figure 2d) did spend dramatically more time in the
dark chamber after they were given experience with shock during the
interim phase, rather than less time. These animals were often visibly
distressed when they were removed from the testing apparatus at the
end of each testing day, and visual inspection of their videos indicated
that they spent a lot of their time in the dark chamber during Testing
huddled in a corner. In contrast, observers that showed extremely
positive IA tended to be calmer when they were removed from the
testing apparatus. This general pattern is consistent with what has
been observed in traditional avoidance training; animals who are not
able to learn avoidance contingencies exhibit much more fear than
those who do. Furthermore, animals who are extremely fearful due
to previous conditioning are sometimes very poor at learning how
to avoid the stimulus that is causing the fear (Weiss, Krieckhaus, &
Conte, 1968). This raises the possibility that the neural systems that
led to a few Observers spending more time in the dark chamber during
Testing may be different from those that initially motivated IA for most
rats. The neural systems that contributed to animals huddling in the
corner of the dark chamber may be more directly involved in freezing
responses, and therefore may preferentially involve the paraventric-
ular nucleus, central amygdala, or bed nucleus of the stria terminalis
(Tovote, Fadok, & Liithi, 2015). We speculate that one way to im-
prove behavioral predictions for rats who show very poor IA in the
IA test would be to incorporate measurements of neural activity from
these brain regions into the models described in the present study.
Additional experiments would be needed to test this hypothesis, but
the results of the c-Fos and LFP analyses taken together underline
the importance of using multiple, complimentary measures of neural
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activity to dissect the biological basis of behavior, provide evidence
that intersubjective decisions are the result of multiple information
processing systems, and suggest that the LFP parameters identified
in the present study are only a subset of those needed to describe the
full range of behavior in the IAT.

Acknowledging that the ENET-Dark results characterized interme-
diate values of IA better than extreme values, one of the important
results of this study is that the ENET procedure repeatedly indicated
that power and coherence neural parameters were required to opti-
mally account for behavior when the LFP predictors were modeled
jointly, even when single rats were left out of the analysis or when
grooming and social investigation are taken into account. These results
show that the aspects of IA captured by our ENET model is at least
partially encoded by the relationship of activity between brain regions
rather than by activity in single brain regions in isolation. These results
indicate that neural context may be an important aspect of how the
rodent brain encodes socially-motivated actions, and that functions
of individual brain areas during intersubjective decisions may be tai-
lored by the activity occurring in other brain regions at the same time.
The role of functional connectivity in vertebrate social behavior has
been suggested through correlations of immediate early gene expres-
sion or cytochrome oxidase patterns after social tasks (Hoke, Ryan, &
Wilczynski, 2005; Sakata, Coomber, Gonzalez-Lima, & Crews, 2000;
Teles et al., 2015; Yang & Wilczynski, 2007). Our results support those
previous reports, and show with high temporal resolution in mammals
that frequency-specific mechanisms for coordinating electrical activity
in spatially distributed brain regions, themselves, can encode individ-
ual differences in how rats integrate social distress information into
their choices for action.

If specific frequencies of oscillations invoke distinct functions from
brain regions, it might be possible to use multiple frequencies of os-
cillations to invoke multiple functions in the same brain region at the
same time. Activity in the anterior insula synchronized with other brain
regions at several distinct frequencies in this study, and those frequen-
cies encoded IA in different ways. In particular, low gamma coherence
between the INS and OFC/BLA correlated positively with IA, while
high gamma coherence between the INS and OFC/BLA correlated
negatively with IA. In addition, low gamma oscillations in the insula
preceded those in the amygdala in the low gamma range, but followed
those in the amygdala in the high gamma range. Although the direction
of relationships of predictors in models with high collinearity should
be interpreted with caution (Friedman & Wall, 2005; Ganzach, 1997
Julious & Mullee, 1994), these results are consistent with human
neuroimaging studies suggesting the anterior insula has dynamic
functional connections with multiple separate brain networks (Nomi
et al.,, 2016), and may even orchestrate the switches between these
networks (Menon & Uddin, 2010; Sridharan, Levitin, & Menon, 2008).
These results are also consistent with the contradicting, paradoxical
effects of insula lesions on addiction (Droutman, Read, & Bechara,
2015), and the paradoxical relationships between insula thickness
and hemodynamic activity with psychopathy (Decety, Skelly, & Kiehl,
2013; Ly et al., 2012). A related observation has been made in humans,
suggesting that functional connectivity during resting state between
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the INS, OFC, ACC, and amygdala correlates positively with “affective
empathy” or the ability to share the emotional experiences of others,
while functional connectivity between INS, bilateral superior temporal
gyri/sulci, and brainstem at the same time correlates negatively with
affective empathy (but positively with the ability to take the mental
perspective of others) (Cox et al., 2012). Overall, specific frequencies
of synchronization between neural populations in spatially distributed
brain regions may permit different types of information transfer, which
may in turn lead a brain region to have multiple computational func-
tions within the same behavioral task.

One consequence of using oscillations between brain regions to
encode behaviors is that activity within individual brain regions, when
examined in isolation, can yield a fundamentally incomplete view of
how the brain performs a function or behavior, and may even lead
researchers to misinterpret necessity or sufficiency studies. For ex-
ample, the opposing relationships of IA with low versus high gamma
synchrony between INS and OFC/BLA would be completely occluded
by lesion or sufficiency studies that manipulate all of the activity
within the INS at once. Therefore, moving forward it will be important
to continue examining neural context in the rodent brain in addition
to isolated neural activity. Towards this end, the ENET computational
framework and multisite recording strategies we describe here pro-
vide a straightforward method for inferring neural context that can
be applied to future rodent studies that examine other brain regions
or use other behavioral tests. Future studies may also benefit from in-
corporating computational modeling to understand the contributions
of anatomical units whose functions are determined by multiple net-
work interactions with multiple feedback mechanisms. Computational
modeling may additionally help to untangle the confounding relation-
ships between IA, grooming, and social interaction. Although our anal-
ysis using |A residuals suggest that the network patterns we report
in the present study are not likely to be fully explained by grooming
and social interaction, there are some interactions (especially in the
alpha band), and it is unclear whether the experience of negative inter-
subjectivity, on its own, motivates changes in grooming and social in-
teraction. More targeted analyses will be needed to comprehensively
understand the nature of the relationships between these behaviors
(as well as any other subsidiary behaviors we did not control for), 1A,
and individual LFP parameters. Especially since some of these behav-
iors may occur on time scales that are faster than the 1-s windows we
used to analyze our LFP signals, it will be useful for future studies to
develop experimental preparations and statistical methods that can
examine the contributions of individual types of movements to the
overall IA measure we use in the present study.

To aid future studies designed to test how bands of LFPs in in-
dividual brain areas or pairs of brain areas encode intersubjective
decision-making, we propose the following working hypotheses about
the cognitive subprocesses that might be supported by the specific
oscillations we found to encode intermediate levels of IA in the pres-
ent study. Locomotor decisions generally reflect cost-benefit analyses
of the positive and negative outcomes expected from salient stimuli
in the environment (Hirayama et al., 2014). The alpha oscillations
(8-12 Hz) we observed may contribute to the encoding of positive
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expected outcomes, as they are similar to those observed in the ol-
factory system of rats during positive social interactions (Tendler &
Wagner, 2015). The theta (4-6 Hz) power and coherence oscillations
we observed may contribute to the encoding of negative expected
outcomes, as they are similar to those reported in olfactory regions
during fear conditioning in rats (Tendler & Wagner, 2015), and in the
ACC and BLA during observational fear conditioning in mice (Jeon
et al., 2010). Alpha oscillations have also been reported in the hip-
pocampus during motivated movement, while theta oscillations have
been reported in the hippocampus reported during fear-induced im-
mobility (Oddie & Bland, 1998; Pineda, 2005; Sainsbury, 1998). We
found alpha oscillations to be positively correlated with IA when
Observers were in the dark chamber, and theta oscillations to be
negatively correlated with IA when Observers were in either cham-
ber. BLA theta oscillations, specifically, only correlated with IA when
Observers were in the light chamber, and seemed to encode informa-
tion passed from the cortex to the amygdala. The amygdala may be a
key coordinator of the alpha signals, as the phase of its alpha oscilla-
tions preceded that of all other brain regions tested. When considered
in light of previous studies, these results suggest that intersubjective
judgments in the IA test might be the result of a conflict between ap-
petitive social affiliation and learned fear, such that the outcome of
a judgment is determined by the relative presence of alpha oscilla-
tions that mediate motivated social interaction and theta oscillations
that mediate freezing responses. This interpretation is consistent with
human studies showing that children who become overly distressed
in response to witnessing another child’s suffering are less likely than
children who are only moderately distressed to help the suffering child
in pain (Eisenberg, Eggum, & Di Giunta, 2010). In essence, in order to
take action to reduce another’s pain, we may need to suppress, or at
least overshadow, our own fear circuits.

We found that the ACC may be a key player in the downstream
output of the alpha signals, as the phases of its alpha oscillations fol-
lowed those of all other brain regions tested. The alpha signals in the
ACC might interact with the gamma signals in the ACC (Canolty &
Knight, 2010). One potential explanation for the IA-encoding gamma
oscillations we observed comes from a recent study showing that
mice missing the immediate early gene Arc (which has similar activity-
dependent properties to the immediate early gene c-Fos used in the
present study) have relatively reduced gamma oscillatory power during
active tasks, but not at rest (Malkki et al., 2016). In addition, other
studies that have shown that gamma oscillations correlate with perfor-
mance during emotional memory tasks (Headley & Paré, 2013). These
studies suggest gamma oscillations may facilitate the long-term poten-
tiation and depression associated with neuronal plasticity and learn-
ing. In the context of the IA test, gamma oscillations may integrate
the binding of the affective responses mediated by the INS and AMY
with value information in the OFC to potentiate action through the
ACC and downstream regions such as the basal ganglia and substan-
tia nigra pars reticulata (Hormigo et al., 2016; Shackman et al., 2011).
When such action is potentiated through learning, intersubjective
avoidance would occur with greater frequency and rapidity. An inter-
esting hypothesis, then, is that the ACC may control the motor output

of an intersubjective decision by integrating motivational informa-
tion passed through alpha oscillations with learned motor responses
encoded through gamma oscillations (Bosman, Lansink, & Pennartz,
2014). More experiments will be useful for testing this hypothesis, and
for uncovering other potential computational roles of the oscillations
identified in this study.

One of the primary motivations for trying to understand the neu-
ral basis of intersubjective judgement is to gain insight into how in-
terventions could be designed to augment human prosocial behavior
and decrease human violence. Not all humans would perform the in-
tersubjective avoidance exhibited by the rats in this study, especially
violent psychopaths. Even if we do not yet know a rats’ motives for
demonstrating |IA, understanding the neural mechanisms underlying
rats’ decision to avoid other rats’ distress may provide insight into
what neural mechanisms can be exploited to help humans avoid other
humans’ distress as well, especially given that the brain regions we
found to encode rat IA have also been implicated in human empa-
thy and social processing. The results presented here suggest that it
would be valuable to explore whether deep-brain stimulation or tran-
scranial magnetic stimulation targeting networks within the ACC, INS,
OFC, and amygdala can be used to help treat pathologically antiso-
cial human behavior, making sure to take the functional connectivity
of the networks are taken into account (Smart, Tiruvadi, & Mayberg,
2015). Exploring such treatment options could ultimately help us re-
duce the influence of extremely violent individuals, but will also hope-
fully allow us to obtain a more mechanistic understanding of how one
of the most complex, but fundamental, phenomena governing human
societies works: the notion that humans make personal sacrifices to
reduce others’ pain.
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